

NAD 激酶(NAD kinase, NADK)试剂盒说明书

(货号: BP10444F 紫外法 48样 有效期: 3个月)

一、指标介绍:

NADK (EC 2.7.1.23) 广泛存在于动物、植物、微生物和培养细胞中,是目前所发现的生物体内惟一能够催化 NAD+磷酸化生成 NADP+的酶,因此,NAD 激酶在合成 NADP(H)以及调节 NAD(H)与 NADP(H)的平衡上具有重要作用。

NADK 催化 NAD+磷酸化生成 NADP+;接着在 6-磷酸葡萄糖脱氢酶和 6-磷酸葡萄糖作用下,使 NADP+还原成 NADPH。通过检测 NADPH 在 340 nm 下的增加速率。可得出 NADK 酶活性的大小。

二、试剂盒的组成和配制:

试剂组分	试剂规格	存放温度	注意事项
提取液	液体 60mL×1 瓶	4℃保存	
试剂一	粉剂 1 支	-20℃保存	1. 临用前 8000g 4°C 离心 2mim 使试剂落入管底; 2. 加入 1.1mL 蒸馏水溶解; 3. 保存周期与试剂盒有效期相同。
试剂二	液体 1 支	-20℃保存	1. 临用前 8000g 4°C 离心 2mim 使试剂落入管底; 2. 加入 1.1mL 蒸馏水溶解,可分 装冻存。
试剂三	液体 40mL×1 瓶	4℃保存	
试剂四	粉剂 1 支	4℃保存	1. 临用前 8000g 4°C 离心 2mim 使试剂落入管底; 2. 加入 1.1mL 蒸馏水溶解; 3. 保存周期与试剂盒有效期相同。

三、实验器材:

研钵(匀浆机)、冰盒(制冰机)、台式离心机、可调式移液枪、水浴锅(烘箱、培养箱、金属浴)、 1ml 石英比色皿、离心管、紫外分光光度计、蒸馏水(去离子水、超纯水均可)。

四、指标测定:

建议先选取 1-3 个差异大的样本(例如不同类型或分组)进行预实验,熟悉操作流程,根据预实验结果确定或调整样本浓度,以防造成样本或试剂不必要的浪费!

1、样本提取:

① 组织样本

称取约 0.1g 组织, 加入 1mL 提取液, 进行冰浴匀浆。4°C×12000g 离心 10min, 取上清, 置冰上待测。

【注】: 若增加样本量,可按照组织质量(g):提取液体积(mL)为1:5~10的比例进行提取。

② 细菌/细胞样本:

先收集细菌或细胞到离心管内,离心后弃上清;取 500 万细菌或细胞加入 1mL 提取液;超声波破碎细菌或细胞(冰浴,300W,超声 3s,间隔 7s,重复 30 次); 4 $^{\circ}$ C×12000g 离心 10min,取上清,置冰上待测。

- 【注】: 若增加样本量,按照细菌或细胞数量(10⁴个): 提取液体积(mL)为500~1000:1比例进行提取。
- ③ 液体样本:直接检测,若浑浊则离心后取上清液检测。
- 2、检测步骤:

网址: www.bpelisa.com

- ① 紫外分光光度计预热 30min 以上,调节波长至 340nm,蒸馏水调零。
- ② 所有试剂解冻至室温 (25℃)
- ③ 在 1mL 石英比色皿 (光径 1cm) 中依次加入下列试剂:

试剂组分(μL)	测定管			
样本	40			
试剂一	20			
试剂二	20			
试剂三	700			
混匀, 25℃下孵育 5-10min				
试剂四	20			
混匀, 25℃下立即于 340nm 处读取 A1, 2min 后读				

混匀, 25℃下立即于 340nm 处读取 A1, 2min 后读 取 A2, △A=A2-A1。

【注】1. 若 A2 值大于 1.5,则可减少样本上样量 V1(如减至 5μ L,则试剂三相应增加),或缩短反应时间 T(如缩至 $1\min$ 或更短),则改变后的加样量 V1 和反应时间 T 需代入公式重新计算。 2. 若 Δ A 在零附近徘徊,可增加样本量(如增至 20μ L,则试剂三相应减少),或增加反应时间 T(如增至 $5\min$ 或更长)。则改变后的加样量 V1 和反应时间 T 需代入公式重新计算。

五、结果计算:

1、按样本蛋白浓度计算:

酶活定义: 每毫克组织蛋白每分钟生成 1μmol 的 NADP+定义为一个酶活力单位。

NADK(μ mol/min/mg prot)=[$\Delta A \times V2 \div (\epsilon \times d) \times 10^6$] $\div (V1 \times Cpr) \div T=1.61 \times \Delta A \div Cpr$

2、按样本鲜重计算:

酶活定义:每克组织每分钟生成 1μ mol 的 NADP+定义为一个酶活力单位 NADK(μ mol/min/g 鲜重)=[Δ A×V2÷(ϵ ×d)× 10^6]÷(W×V1÷V)÷T=1.61× Δ A÷W

3、按细菌/细胞密度计算:

酶活定义:每 1 万个细菌或细胞每分钟生成 1 μ mol 的 NADP+定义为一个酶活力单 NADK(μ mol/min/10 4 cell)=[Δ A×V2÷(ϵ ×d)×10 6]÷(500×V1÷V)÷T=0.003× Δ A

4、按液体样本计算:

酶活定义:每毫升液体每分钟生成 $1\mu mol$ 的 $NADP^+$ 定义为一个酶活力单位。 $NADK(\mu mol/min/mL)=[\Delta A \times V2 \div (\epsilon \times d) \times 10^6] \div V1 \div T=1.61 \times \Delta A$

ε---NADPH 摩尔消光系数, 6.22×10³ L/mol/cm; d---96 孔板光径, 1cm;

V---加入提取液体积,1 mL; V1---加入样本体积,0.04 mL;

V2---反应体系总体积 8×10⁻⁴ L; T---反应时间, 2 min;

W---样本质量, g; 500---细菌或细胞总数, 万;

Cpr---样本蛋白质浓度,mg/mL;建议使用本公司的 BCA 蛋白含量检测试剂盒。

网址: www.bpelisa.com